College of Business Administration
University of Rhode Island

William A. Orme

WORKING PAPER SERIES
encouraging creative research

Engaging Donors in Smart Compassion: USAID’s Greatest Good Donation Calculator

Koray Özpolat, Juanita Rilling, Nezih Altay, and Eric Chavez

2013/2014   No. 4

This working paper series is intended to facilitate discussion and encourage the exchange of ideas. Inclusion here does not preclude publication elsewhere. It is the original work of the author(s) and subject to copyright regulations.

Office of the Dean
College of Business Administration
Ballentine Hall
7 Lippitt Road
Kingston, RI 02881
401-874-2337
www.cba.uri.edu
Engaging Donors in Smart Compassion: USAID’s Greatest Good Donation Calculator

Koray Özpolat
Assistant Professor
College of Business Administration
University of Rhode Island
Kingston, Rhode Island
U.S.A.

Juanita Rilling
Director
Center for International Disaster Information
United States Agency for International Development
Washington D.C.
U.S.A.

Nezih Altay
Associate Professor
Dreihaus College of Business
DePaul University
Chicago, Illinois
U.S.A.

Eric Chavez
Senior Research Analyst
Center for International Disaster Information
United States Agency for International Development
Washington D.C.
U.S.A.
1. Introduction

Though the devastating impact of the 2010 earthquake in Haiti is still very much visible and tragic stories of Haitians are lingering in our memory, citizens of the world have experienced many more catastrophic events since then, some in unprecedented size and effect. The March 2011 earthquake, tsunami and nuclear reactor disaster trifecta in Japan, and the recent typhoon Haiyan in the Philippines – strongest storm ever to make landfall – are only two examples of recent large scale catastrophes. With the change in global climate, the magnitude and frequency of disasters are further expected to increase in the future (Braman et al. 2010). Although these events in Haiti, Japan and the Philippines are all local in nature, they have one thing in common and that is material convergence.

After a large scale disaster local government, law enforcement, armed forces, emergency response teams, NGOs, charities and volunteers alike rush to the incident site creating a “convergence” of goods, people and information (Fritz and Mathewson, 1957). While this arrival of much-needed help is most welcome by the impacted communities, a speedy and smooth delivery of assistance is frequently hindered by the “traffic jam” created by unsolicited goods and volunteers. Not only do NGOs and relief agencies collect these unsolicited goods domestically and ship to disaster sites but also many highly motivated individual donors pay exorbitant fees to ship unsolicited donations to disaster sites, by air and by sea, usually without a consignee.

While the general population unfamiliar with what goes into a humanitarian response operation may think that their donated goods – even though unsolicited – are helping the affected population, the reality is that these goods take up precious time and already scarce human resources to unload, sort, store and distribute. Once unloaded from plane or ship, these donations
sit in staging areas, occluding space needed to stage life-saving supplies. They usually must be moved aside, which takes relief workers' time and may require equipment. Resources devoted to this purpose are frequently drawn at the expense of attention to survivors and programs that support them. In some cases even, these unwanted, inappropriate and generally unusable goods make up most of the donated goods. For example, unwanted goods constituted 95% of all goods received in the wake of the 1993 earthquake in Bangladesh (Chomilier et al., 2003).

Unfortunately, the Bangladesh case is not an exception as anecdotal evidence of inappropriate, expired, or unwanted donations is aplenty (Altay, 2008; Holguin-Veras et al., 2012).

The problem is so serious that disaster responders call it “the second disaster” (Newsweek, 2002). Still, humanitarian aid organizations are not willing to reject unsolicited donations in fear of upsetting donors and potentially lose future funding (Holguin-Veras et al., 2012). However, there is growing push in the humanitarian community for cash donations as money gives these organizations tremendous flexibility in their operations. The general public on the other hand, partially due to their unfamiliarity with the sector and partially the sector’s not-so-stellar transparency record, is reluctant in making donations in cash. The reader reaction to a recent article by a long time humanitarian worker, Jessica Alexander indicates that donors are still worried about how their money will be used while humanitarian workers applauded her efforts in educating donors about the disadvantages of donating unsolicited goods, or in her words “cleaning out their closet” or garage (Alexander, 2013).

In light of the discussions in the humanitarian sector and academia, and based on anecdotal evidence, the three facts regarding unsolicited goods are that (1) gifts-in-kind are commonly donated by individual donors and still collected by many humanitarian organizations; (2) the general public is not knowledgeable about the logistics costs of moving humanitarian aid, and (3)
they also believe that only a little portion of monetary donations find their way to those who need it. Thus, one solution to alleviate their misconception is to “educate” donors on the unintended consequences of donating unsolicited goods.

The aim of this paper is to introduce an online participatory learning tool, the Greatest Good Donation Calculator (GGDC) developed to educate the American public about the real cost of shipping and handling material items overseas, and illustrate that the value of these items frequently do not justify the logistics costs of moving those items to a disaster-affected country. Using the GGDC, an individual donor can see how much it will cost to ship a certain good (e.g., a pair of jeans, a teddy bear…) directly to a given destination. The calculator then compares this shipping cost with what the same amount of money could purchase as a cash donation to a charitable organization and how many survivors would be served with that cash donation in the disaster-affected country. Consequently, the inefficiencies of sending material donations as relief aid to international disasters are made visible to the donors, encouraging them to donate cash instead.

2. Experiential Learning, Games and Data-based Decision Tools

Human learning significantly depends on feedback received after making a decision and acting on it (Sterman, 1994). The negative consequences of our actions motivate us to adjust/change our prior actions and also evaluate our mental models to better reach our goals in the future. However, the path to learning through feedback is challenged by many barriers in complex dynamic systems. In real life there is often a delay between an action and its consequences which is not fully accounted for by many decision makers. For example, the delay (lead time) between placing and receiving an order is a cause of the bullwhip effect in the beer distribution game. When these delays are long, humans find it difficult to link their actions to the consequences
which hinder learning. Other barriers to learning through feedback include the limited and imperfect information, confounding factors, ambiguity, and poor reasoning and inquiry skills of humans. To improve learning in complex systems, Sterman (1994) suggests that decision-makers experiment regularly in not only real life but also in “virtual worlds”, which he defines as “formal models or microworlds in which decision makers can refresh decision making skills, conduct experiments and play” (pp. 317). By compressing the time and space, virtual worlds allow the decision maker to experience and learn more in a relatively short period. Simulations, role plays and games are examples of learning in virtual worlds, which are commonly used to teach trainees how to interact with complex systems. As humanitarian operations are complex systems “characterized by multiple actors, feedback loops, time pressures, resource constraints and uncertainty” (Besiou et al. 2011, pp.78), using games and simulations can also help educate humanitarian professionals and donors in making more informed decisions.

The first use of games for education and development were war game simulations in ancient China and India. Games, simulations and data-based decision making tools have been used for providing students, practitioners and executives with experiential learning opportunities for some time now. Airlines use simulations to train pilots (e.g., flight simulators), militaries use simulations and games to teach war strategy (e.g., Marine Doom), advocacy groups use games (e.g., Half the Sky) as a catalyst for social change (Sydell, 2013), and business schools use games to teach decision making, team work and leadership (Harteveld, 2011). Keys and Wolfe (1990) and Lane (1995) provide excellent reviews and analysis of games and simulation use in management education.

It has been discussed that gaps exist between research and education as well as practice and education in humanitarian logistics (Kovacs and Spens, 2011). Following this research lead, Lu
et al. (2013) suggest that one of the ways humanitarian logisticians learn is by doing, or as Huber (1991) refers to it, experiential learning. Experiential learning is about creating an environment in which the participants get involved in some activity that is meaningful on a personal level (Keys and Wolfe, 1990). Bowen (1987) suggests that experiential learning has bigger impact when there is a significant emotional stimulus, when the experience takes place in a safe environment, and is accompanied by ample processing time along with a clear summary providing a cognitive map for understanding the experience. Additionally, Keys (1989) considers three factors that are essential for effective experiential learning: content (i.e., dissemination of new ideas, principles or concepts); experience (i.e., an opportunity to apply content in an experiential environment); and feedback on the relationship between the actions taken and performance.

Data-based decision making tools are one form of simulation. They allow the user to test various scenarios and perform what if analysis. Keys and Wolfe (1990) define a simulated experimental environment as “a simplified and contrived situation that contains enough verisimilitude or illusion of reality, to induce real world-like responses by those participating in the exercise” (pp. 308). Data-based decision support tools are being used to train medical students on evidence-based medicine (Leung et al., 2003). Similarly, decision support tools such as online mortgage calculators or retirement savings calculators have been used to build consumer literacy in the financial sector (Howlett et al., 2008). At least in the healthcare context, it has been shown that building consumer literacy is critical for implementing policies properly because it increases participation in health care (Protehroe et al., 2009).

We draw a parallel between health literacy and its implications in healthcare with the literacy of donors in the humanitarian sector and its implications in humanitarian logistics. Consequently,
the Greatest Good Donation Calculator described in this paper can be considered a data-based decision support tool to create awareness of logistics costs in the humanitarian sector and educate donors on the merits of making cash donations. The GGDC satisfies Bowen’s (1987) three criteria mentioned above and covers Keys’ (1989) three factors (content, experience and feedback) in a very simply way providing an experiential learning tool to the general public.

3. The second disaster: unsolicited material donations

Though seldom evaluated by scholars researching the topic of humanitarian logistics, the impact that donors have on disaster relief operations can be highly significant. In his Blackett Memorial Lecture, Van Wassenhove (2006, pp. 475) stated that, “Since disaster relief is about 80% logistics it would follow then that the only way to achieve this [more effective disaster relief operations] is through slick, efficient and effective logistics operations and more precisely, supply chain management.” However, one of the greatest challenges to humanitarian logistics during a disaster relief operation comes in the form of unsolicited material donations. Besiou et al. (2011, pp. 93) report that in the aftermath of the 2010 Haiti earthquake, “large quantities of donations from the public addressed to The People of Haiti arrived at the already congested airport”, which further disrupted the already strained humanitarian operations on the ground. Hence, it is very important to raise public awareness about the inappropriateness of unsolicited material donations and encourage individual and organizational donors to give cash instead.

3.1 Monetary vs. material donations in response to international disasters

The effect that monetary and material donations have on a disaster relief operation is best evaluated by comparing their respective impacts on the humanitarian supply chain. The humanitarian supply chain is a vital function of disaster relief because it is the mechanism by which relief organizations acquire and distribute goods and services to disaster-affected people.
In this respect, the humanitarian supply chain is similar to a private sector supply chain because both describe “a set of three or more entities (organizations or individuals) directly involved in the upstream and downstream flows of products, services, finances, and/or information from a source to a customer” (Mentzer et al., 2001, pp. 4). In the case of a disaster relief operation, the customers are the disaster-affected population, and the sources could range from individual donors to private businesses, governments, etc., with relief organizations acting as intermediaries between these two parts of the supply chain.

Different phases of a disaster relief operation favor different qualities in a humanitarian supply chain, and while scholars debate these phases and their relative goals, the most commonly agreed upon phases areMitigation, Preparation, Response, and Reconstruction (Cozzolino, 2012). Donations primarily impact the Response and Reconstruction phases, and the way in which donors choose to contribute to disaster relief efforts can dramatically influence the effectiveness of a disaster relief operation because of logistical implications they place on relief organizations.

The Response phase of a disaster relief operation occurs immediately after the onset of a disaster (Cozzolino, 2012), during which the first 72 hours are considered to be crucial. This forces relief organizations to favor speed over all else (Van Wassenhove, 2006). In the wake of a natural disaster, such as the 2010 Haiti Earthquake, substantial loss of life can occur and be exacerbated by sluggish relief operations. This adds the pressure of time constraints on relief organizations that can mean the difference between life and death for disaster-affected people (Van Wassenhove, 2006).

While evaluating supply chains operating in volatile markets, particularly in the auto industry, Christopher (2000, p. 38) asserts that, “[a]gility is needed in less predictable environments where
demand is volatile and the requirement for variety is high.” Disaster relief operations, particularly in their early stages, are conducted in a highly volatile environment where the needs of the disaster-affected population can be unpredictable, and may change frequently (Oloruntoba and Gray, 2006). Unsolicited material donations can disrupt the humanitarian supply chain because they are provided by donors that, while well-intentioned, are generally unaware of needs on the ground, and as a result, may fail to match up with those needs (Van Wassenhove et al., 2010). This causes logistical problems that severely reduce the agility of the humanitarian supply chain, delaying distribution of needed goods and services to disaster-affected people.

As a disaster relief operation transitions from the Response phase to the Reconstruction phase, the goals of the operation shift from being short-term in nature to long-term (Cozzolino, 2012). For logisticians working in disaster relief management, this translates into a shift in focus from speed to cost savings (Tomasini and Van Wassenhove, 2009). Relief organizations begin to experience responder fatigue, reduced funding, and other logistical barriers that place increased pressure on logisticians to do more with less; a quality in the manufacturing industry that is generally referred to as “leaness” (Cozzolino, 2012)

Here again, unsolicited material donations have a disruptive influence on a humanitarian supply chain by reducing its capacity for cost-savings, or, “leaness”. Not only do they take time away from relief workers, whose staffs may be waning, the additional cost of warehousing and transportation for unplanned and unneeded items severely cuts into the limited resources available to relief organizations.

Conversely, monetary donations assist logisticians by increasing the effectiveness of the humanitarian supply chain, whether its current focus is on agility, leanness or both. Monetary donations enable relief organizations to purchase supplies that directly correspond with changing
needs on the ground while enabling logisticians to more effectively plan storage, transportation, and delivery of supplies. This dramatically increases the capability of relief organizations to control costs, and quickly provide needed goods and services to disaster survivors.

3.2 Logistics of handling material donations

Logisticians working in disaster relief management are responsible for planning how relief operations are carried out (Van Wassenhove, 2006), including the preparation of proper storage, transportation, and distribution of materials received. Unsolicited material donations are by definition, unplanned, and force relief organizations to divert resources intended for planned inventory materials to the storage, transportation and distribution of unplanned materials.

After the 2004 Indian Ocean Tsunami, large-scale relief efforts were made in the disaster-affected countries of Southeast Asia. However, a report by the Fritz Institute that surveyed over 350 non-governmental organizations (NGOs) working in India and Sri Lanka during the tsunami recovery effort found that, “[h]igh levels of unsolicited in-kind donations-reported by 61% of surveyed NGOs in India, and 41% in Sri Lanka-further eroded warehousing and transshipment capacity. In some instances, warehousing and transportation shortfalls combined with oversupply of goods created critical logistical bottlenecks, which in turn forced the unwanted disbursement of aid materials” (Fritz Institute, 2005, pp.3). Because of the drain on resources such as available warehousing space, and the time relief workers must devote to sorting through donated items, unsolicited material donations often cause “bottlenecking” in humanitarian supply chains (Stapleton et al., 2010). Bottlenecks delay the provision of goods and services by relief organizations, and hinder their ability to quickly respond to the changing needs of the disaster-affected population.
In places like Sri Lanka, all manner of unusable materials, including winter hats, thong underwear, cologne, and women’s dress shoes arrived only to strain relief workers who dubbed them as “frustrated cargo” because of the logistical problems they posed to relief organizations working in the region. “Mounds of donated clothes litter the coastal highway south of Colombo. Bottled water from European mountain streams is flowing freely, raising concern about litter in the jungle. Medicines that are no longer needed, such as morphine, are feared to be loose in the country. Paradoxically, many vital needs still aren’t being met, even as pointless donations pile up” (Bart and Bellman, 2005, para. 3, 6).

Similarly, between 1992 and 1996, an estimated total of 27,800 to 34,800 tons of medical supplies were donated to Bosnia, ostensibly to assist the relief effort, of which approximately 17,000 tons were deemed unusable-consisting of expired medications and unneeded supplies. The cost of disposal for these unusable medical donations amounted to $34 million (Berckmans et al., 1997). This figure exclusively represents the cost of disposal, and does not include the cost of transportation and delivery, or the hours spent sorting through these medications to identify them and determine their expiration dates. Moreover, $34 million could have been more constructively applied to needs of disaster-affected people, as opposed to alleviating a second disaster.

Another risk of sending material donations to a disaster-affected country is that they may never reach the disaster-affected area. Depending on the recipient country’s customs policies, material donations may languish in a local customs office indefinitely, which may result in a sizable bill for storage to relief organizations attempting to retrieve them. Two years after the 2004 Indian Ocean Tsunami, an estimated 217 containers of aid remained sitting in Tanjung
Priok Port outside Jakarta, while an additional 232 containers of supplies and 58 vehicles remained sequestered to Belawan Port, Medan (Diani, 2006).

When material donations are actually delivered to the disaster-affected area, they require space to be securely stored, individually sorted by relief workers, and, if determined to be useful, distributed to the disaster-affected population. Distribution requires intense logistical planning, including considerations for relief supply allocation, vehicle delivery scheduling, vehicle routing and safety. This can be further complicated by a damaged transportation infrastructure and limited transportation resources (Balcik et al., 2008). Given these considerations, unplanned, unsolicited material donations further complicate the distribution process while complicating inventory management for relief organizations. Despite all the above discussed risks and inefficiencies, many donors still prefer to donate unsolicited goods to international disasters which makes “donor education” an important issue.

4. Encouraging effective forms of donation

4.1 USAID/CIDI

Every year, numerous disasters - both natural and human-caused - occur across the globe resulting in extensive social and economic devastation (Guha-Sapir et al., 2013). The U.S. Agency for International Development’s Office of U.S. Foreign Disaster Assistance (OFDA) responds to an average of 70 international disasters in more than 50 countries every year. OFDA’s mandate is to save lives, alleviate human suffering, and reduce the economic and social impact of humanitarian emergencies worldwide. One challenge to meeting this mandate is unsolicited material donations.

In 1988, USAID created the Center for International Disaster Information (USAID CIDI) one month after Hurricane Gilbert - a Category 5 storm - made landfall, affecting ten countries in
Latin America and the Caribbean. A sustained outpouring of unsolicited donations occluded space needed to stage and deliver life-saving relief supplies, and responders spent valuable time and resources managing unneeded clothing, expired medicine, and other unnecessary items. Hence, USAID CIDI’s mission is to educate the American public about the most effective and appropriate ways to help international disaster survivors. USAID CIDI supports OFDA’s mission by engaging and informing the American public in an effort to curb the volume of unsolicited material donations that are sent to disaster relief sites by U.S. donors.

4.2 Smart compassion

Decades of experience with donors, donations, and relief efforts, and attention to focus groups and research has led USAID CIDI to conclude that monetary contributions to proven relief agencies give the best support to disaster-affected people, in part by helping humanitarian logisticians maintain effective supply chains. Monetary donations help to ensure that supplies are fresh and familiar to survivors, that provisions arrive quickly and that goods are culturally, nutritionally and environmentally appropriate. No unsolicited material donation can be as effective as quickly and at such low cost, with as little trouble for donors, recipients and, in the case of international disaster response, affected countries. In acknowledgement of this beneficial economy of effort, USAID CIDI regards cash donations as a demonstration of “Smart Compassion”. CIDI’s longstanding “tag line” is “Cash Is Best”.

4.3 Collaborating with academia to educate donors: PSAid contest

In an effort to expose more Americans to the benefits of Smart Compassion, USAID CIDI collaborates with U.S. colleges and universities on an annual competition called “PSAid”. This nationwide contest invites students to create 30-second video public services announcements (PSAs) or print PSAs with “Cash Is Best” messaging (e.g., see Figure 1 for an award winning
PSA designed by URI students in 2012). Entries are judged by a panel of experts in humanitarian assistance and media, and winning entries are broadcast nationally. Impact has been significant; according to Nielsen data, between the first winning broadcast in 2008 and September 30, 2013, PSAid PSAs have exposed an audience of 747,366,863 people to “Cash Is Best” messaging at a donated media value of over US $10 million. Student-created PSAs have played in 5 of the top 10 broadcast markets, appearing during commercial breaks of primetime television shows and cable programming. The program’s success has generated a high degree of participation from college students interested in seeing their work broadcast on national outlets.

-------------------

Insert Figure 1 here

-------------------

The PSAid contest has provided a number of benefits. First, hundreds of student contestants have educated themselves about Smart Compassion while designing humanitarian PSA entries to join the contests. Second, this contest offered an engaging and fun learning opportunity in humanitarian logistics to students of Business, Communications, and Art & Design colleges. Finally, students have helped spread “Cash Is Best” messaging to prospective donors in the United States through visual PSAs. These PSAs have been used by relief agencies to educate the public and raise awareness of the challenges in unsolicited material donations to international disasters.

While the PSAs help raise public awareness in “smart compassion”, they are unidirectional in nature and do not allow interaction and dialogue. Next, we elaborate on another collaborative
effort between USAID CIDI and academia - the Greatest Good Donation Calculator which intends to promote smart compassion.

5. The Greatest Good Donation Calculator

The Greatest Good Donation Calculator (GGDC) engages individual U.S. donors in partially experiencing the complex systems behind humanitarian supply chains by informing them about the high costs of shipping material items overseas. The GGDC illustrates that the value of items most frequently sent, measured in U.S. dollars, is usually less than the cost of shipping those items to a disaster-affected country. More specifically, the calculator compares the cost of shipping a selected item with what the same amount of money could purchase as a cash donation to a charitable organization and how many survivors would be served with that cash donation in the disaster-affected country. In every case, the latter provides more sensible and appropriate support to disaster-affected people.

The GGDC which was created over the course of a year-long collaboration between USAID CIDI and the University of Rhode Island (URI) went live on www.cidi.org in April 2013. The inter-disciplinary URI team consisted of two professors (one business and one computer engineering), three undergraduate students (two business and one computer engineering) who met CIDI professionals regularly during different phases of the project. The logistical aspects of the calculator were handled by the business professor and students while web design was handled by computer engineering professor and student. Point-to-point shipment data, donated item costs and equivalent local purchase quantities in the disaster-affected country were obtained from Fed-Ex, Wal-Mart, and OFDA’s logistics unit. GGDC users select one of the four commonly donated items, a point of origin in the U.S. and a disaster-affected destination city in one of ten countries as shown in Table 1. From those data points, the calculator informs the
viewer how much the donation will cost to ship, and examples of what the same amount of money could purchase (e.g., drinkable water, blankets or hygiene kits) if donated directly to a relief organization in the disaster-affected country and how many victims would be helped with that cash donation. Four origin cities – Washington D.C., Miami, Chicago and Los Angeles - were chosen to represent a variety of U.S. population centers and the shortlist of four commonly donated items, ten disasters affected destination countries and the three alternative items that could be purchased in the disaster affected country with cash, were all made in consultation with the OFDA humanitarian experts who are regularly involved in disaster relief operations.

-------------------

Insert Table 1 here

-------------------

For example, assume Jane wants to send a teddy bear from her hometown Chicago to Tokyo / Japan. At the GGDC web site’s drop down menus, she selects teddy bear out of the four commonly donated items, Chicago out of four origin cities and Tokyo / Japan out of ten disaster affected destination cities as shown in the Screenshot 1 of Figure 2. Once she clicks the “Calculate Donation Cost” button, the screen is updated with (i) cost of purchasing a teddy bear and directly shipping it to Tokyo - $151.56, (ii) a local relief organization could buy 30,332 liters of clean water in Tokyo which would provide 15,166 people with 2 liters of drinking water for a day, or (iii) $151.66 could also buy 22 blankets in Tokyo, and (iv) closing statement: “Save money. Save lives. Save the planet. Give Green”, all shown in the Screenshot 2 of Figure 2. Alternatively, the number of hygiene kits cash would buy in the disaster-effected country is displayed in some other item-origin-destination combinations.
In the six months following its debut, the calculator was one of the most visited pages on USAID CIDI’s website, attracting 6,753 visitors. Moreover, as the outcome of a successful collaboration between a federal center and a university, the GGDC created lots of buzz in the national media and helped direct attention to CIDI’s smart compassion campaign. Newspapers such as Boston Globe, Providence Journal, Houston Chronicle, Indiana Republic and Massachusetts Sun published stories about the GGDC. Two TV stations: WPRI-TV and EBRU-TV broadcasted this story in their evening news as well. Hence by designing the GGDC project, USAID CIDI and URI blended information and entertainment successfully to encourage smart compassion.

6. Concluding discussion

Humanitarian supply chains are dynamic and complex systems with multiple interacting actors. There is often a delay between an action (e.g., donation) and outcome (e.g., relief). Moreover, the ambiguity and limited information availability might act as barriers to learning and individual or organizational donors find it challenging to understand the implications of their donations downstream in the supply chain. In this study, we introduce the GGDC to the humanitarian logistics community as a decision-aid tool to educate individual donors in smart compassion and allow them to experience the trade-offs.

Well-informed donors are frequently effective donors. Being well-informed includes understanding that every donation has an impact on relief organizations and survivors, and can
be either beneficial, or deleterious to disaster relief operations. Experienced philanthropists contribute monetary donations to disaster relief operations because they understand that money is more versatile and more effective throughout all phases of disaster relief and recovery than are unsolicited material donations. The GGDC gives users a glimpse into the costly, complicated process that can attend receipt of unsolicited material donations, and demonstrates that what they choose to donate can impact survivors and relief efforts for good or ill.

The complex process necessary for an item to leave their hands and enter the hands of a disaster survivor are generally unknown to donors. When compounded by thousands of donors, such information gaps can lead to a disaster within a disaster, or a “second disaster” as some relief workers call it. Clogging the humanitarian supply chain with unsolicited material donations diminishes the ability of relief organizations to assist survivors quickly. Feelings of guilt or shame that come with enlightenment about donation impact, renders many donors unreceptive to straightforward messaging on this issue. For this reason, utilizing games and decision support tools such as the GGDC to raise public awareness in the cost and complexity of this process can be an effective way to deliver information on a sensitive subject in a fun, entertaining way.

References


The University of Rhode Island started to offer undergraduate business administration courses in 1923. In 1962, the MBA program was introduced and the PhD program began in the mid 1980s. The College of Business Administration is accredited by The AACSB International - The Association to Advance Collegiate Schools of Business in 1969. The College of Business enrolls over 1400 undergraduate students and more than 300 graduate students.

Mission

Our responsibility is to provide strong academic programs that instill excellence, confidence and strong leadership skills in our graduates. Our aim is to (1) promote critical and independent thinking, (2) foster personal responsibility and (3) develop students whose performance and commitment mark them as leaders contributing to the business community and society. The College will serve as a center for business scholarship, creative research and outreach activities to the citizens and institutions of the State of Rhode Island as well as the regional, national and international communities.

The creation of this working paper series has been funded by an endowment established by William A. Orme, URI College of Business Administration, Class of 1949 and former head of the General Electric Foundation. This working paper series is intended to permit faculty members to obtain feedback on research activities before the research is submitted to academic and professional journals and professional associations for presentations.

An award is presented annually for the most outstanding paper submitted.